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Abstract
Experimental and theoretical investigations have been made for the first time on the
three-dimensional momentum–density distribution of magnetic electrons in ferromagnetic Ni,
ρmag(p), which is the difference in the electron momentum–density distribution between
majority- and minority-spin electrons. A magnetic Compton-scattering technique is used to
determine ρmag(p) by applying the direct Fourier-transform method to reconstruct ρmag(p) from
magnetic Compton profiles. The corresponding theoretical ρmag(p) is calculated by the
full-potential linearized augmented plane-wave method. The present theory accurately
reproduces the overall structures of experimental ρmag(p). There are, however, slight
quantitative discrepancies between the experimental and calculated values of ρmag(p) around
|p| = 0 au and at the positions related to the X-point. The analysis of ρmag(p) for individual
bands attributes negative ρmag(p) near the first Brillouin zone boundary (|p| ∼ 1.0 au) to the
superposition of highly negative spin-polarized momentum–density of the first band and highly
positive spin-polarized momentum–density of the sixth band. The positively polarized
momentum–density at |p| ∼ 2.2 au is attributed to the d-like fifth band spin polarizations.

1. Introduction

Since the 1960s, 3d transition metals have been studied
intensively to understand their electronic structures, which are
characterized by hybridization between itinerant s-, p- and
nearly localized d-like bands [1]. For magnetic 3d transition
metals, the exchange interaction splits electronic states into
majority- and minority-spin bands and introduces spin-
dependent Fermi surfaces. Thus, their electronic structures
become more complicated than those of non-magnetic 3d
transition metals. For studies of the band structures of
ferromagnetic material, a measurement of momentum–density
distribution of magnetic electrons, ρmag(p), is useful because
ρmag(p) reflects the spin polarization of all occupied electronic
states in a straightforward manner, and is related to spin-
dependent momentum–space wavefunctions. A magnetic
Compton profile (MCP) measurement is unique in that MCP
is the projection of ρmag(p) on the x-ray scattering vector.
Thus, MCP measurements have been frequently performed

to observe spin-dependent electronic states in ferromagnetic
material.

MCP, symbolized by Jmag(pz), is defined as follows (h̄ =
1):

Jmag(pz) =
∫ ∞

−∞

∫ ∞

−∞
ρmag(p) dpx dpy, (1.1)

ρmag (p) = ρ↑ (p)− ρ↓ (p) . (1.2)

Here, ρ↑(p) and ρ↓(p) denote the momentum densities
of majority- and minority-spin electrons, respectively, and the
z-axis direction is taken to be parallel to the x-ray scattering
vector. An integrated value of Jmag(pz) over pz is the spin
magnetic moment of the sample. In the following, p will be
expressed in atomic units (au) (1 au = 1.99×10−24 kg m s−1).
It is possible to image ρmag(p) from a finite number of
directional Jmag(pz) values with a reconstruction scheme [2].
The so-called direct Fourier-transform method is reported as
one of the useful reconstruction schemes [3, 4]. In this
reconstruction procedure, first, we evaluate the reciprocal form
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factor, Bmag(0, 0, z), by the Fourier transform of Jmag(pz):

Bmag(0, 0, z) =
∫

Jmag(pz) exp(−ipzz) dpz

=
∫
ρmag(p) exp(−ipzz) dp. (1.3)

When Bmag(0, 0, z) values are prepared along various x-
ray scattering vectors, a three-dimensional (3D) reciprocal
form factor, Bmag(r), is obtained by interpolation at fine mesh
points in r space. Finally, we obtain ρmag(p) by the inverse
Fourier transform of Bmag(r):

ρmag(p) = 1

(2π)3

∫
Bmag(r) exp(ip · r) dr. (1.4)

This method was applied to ferromagnetic Fe + 3 wt%
Si, using Jmag(pz) values along 14 directions [5]. It was
found that ρmag(p) calculated with the full-potential linearized
augmented plane-wave method, based on the local spin-
density approximation (FLAPW-LSDA) accurately reproduces
the experimental values, and assigns the observed negative
spin-polarized region in the first Brillouin zone (BZ) to the
s- and p-like first and third bands, and positive spin-polarized
peaks in high-momentum regions to d-like fourth and fifth
bands.

Compared to Fe, Ni exhibits many differences in its
electronic structure, resulting from the differences in the crystal
structure and number of electrons per atom. For example, the
density of states, the bandwidth and the position of the Fermi
level all differ. The d-electron density is higher in Ni than in
Fe; therefore, the interaction between d-electrons is expected
to be stronger in Ni than in Fe and the occupation-number
density deviates more from the step function to the non-unity
and non-zero densities in k-space. Because of these features,
it is interesting to examine how accurately the band theory
can explain the experimental momentum–density distribution
in Ni. Several directional Jmag(pz) values on ferromagnetic
Ni have been measured to be consistent with each other within
statistical accuracy, and compared with theoretical values using
the band theories with FLAPW-LSDA and the linear muffin-
tin orbital method within both LSDA and the generalized
gradient approximation [6–8]. It was pointed out that the
band calculation with FLAPW-LSDA has provided a better
description of the experimental Jmag(pz), since FLAPW-LSDA
calculation produced a value for the spin-magnetic moment
closer to the experimental value [7]. The studies revealed
that the Umklapp processes in Jmag(pz), which are derived
from both the nature of the wavefunctions and the geometry
of the Fermi surface, and appear as fine structures in the high-
momentum region of Jmag(pz), are not as prominent as the
theories predicted [7, 8]. Theoretical analyses of MCPs of Ni
for individual bands suggested that the contribution from the d-
like fifth band to Jmag(pz) is overestimated [7, 8]. The studies
also revealed that, for |p| < 1 au, the experimental Jmag(pz)

along the [100] direction has a dip that is deeper than the
predicted value from theory [7, 8]. Besides these discrepancies
between the experimental and theoretical values of Jmag(pz),
there is controversy about the presence of hole pockets at the
X-point. An angle-resolved photoemission spectroscopy study

suggests the presence of X5↓- and X2↓-hole pockets [9], while
a study by the de Haas–van Alphen effect indicates the absence
of X2↓-hole pockets [10]. The LDA + U calculation by Yang
et al [11] predicts the presence of X5↓-hole pockets and the
absence of X2↓-hole pocket.

In this paper, an experimental ρmag(p) of Ni is
reconstructed from directional Jmag(pz) values by the direct
Fourier-transform method and compared with a theoretical
ρmag(p), calculated with FLAPW-LSDA. Theoretical spin-
dependent momentum densities of individual bands are also
presented. The hole-pocket controversy mentioned above is
examined in the expectation that positively polarized densities
may appear at hole-pocket positions in the experimental
ρmag(p).

2. Computations

In the independent particle approximation, the momentum–
density is expressed as (h̄ = 1)

ρσ (p) =
∑

b

ρb
σ (p)+ ρc

σ (p), (2.1)

ρb
σ (p) =

∑
k

∣∣χσ,b,k(p)∣∣2
θ(EF − εσ,b,k), (2.2)

with

χσ,b,k(p) = δ (k + G − p)

∫
ψσ,b,k(r) exp(−ip · r) dr.

(2.3)
Here ρb

σ and ρc
σ are momentum densities of spin-

dependent bth band electrons and core–electron momentum
densities, respectively. The symbols k, G, χσ,b,k and ψσ,b,k
indicate a wavevector, a reciprocal lattice vector, a momentum
space and a real-space wavefunction, respectively. The
symbols θ(EF − εσ,b,k), EF and εσ,b,k are a step function, the
Fermi energy and the electron energy, respectively.

In the present study, the electronic structure of
ferromagnetic Ni has been calculated, based on the FLAPW
method in a scalar relativistic version. The exchange–
correlation effects have been incorporated within the von
Barth–Hedin LSDA scheme [12]. The energy values and
wavefunctions have been calculated at 505 k-points in the
irreducible 1/48th of the BZ for each spin state. The lattice
constant, a, has been set to the experimental value of 6.644 au
(1 au = 0.0529 nm) [13]. The inscribed sphere radius chosen
in the calculation is 2.349 au. Linear-augmented plane-wave
basis functions have been truncated at |k + G| � 5.8(2π/a).
In the spherical-harmonics expansions, angular momentum
values up to lmax = 8 have been taken into account. The
values of ρb

σ (p) in (2.2) have been determined for 7497
reciprocal lattice vectors, which include more than 99.9%
of band electrons. The value of ρc

σ (p) has been calculated
from free-atom wavefunctions obtained using the von Barth–
Hedin exchange–correlation potential based on LSDA [12].
A modified tetrahedron scheme has been used for the BZ
integration of (1.1) [14]. ρmag(p) in (1.2) is obtained from
the difference in spin-dependent momentum densities between

2



J. Phys.: Condens. Matter 20 (2008) 055201 T Nagao et al

Figure 1. (a) The first BZ of the fcc structure. (b) Energy bands in ferromagnetic Ni, calculated with FLAPW-LSDA. Solid and dashed lines
indicate majority- and minority-spin bands, respectively. Thick lines denote the fifth majority- and minority-spin bands. The energy bands are
numbered in order of the energy at each k-point.

majority-spin (σ =↑) and minority-spin (σ =↓) states. The
total spin-magnetic moment obtained is 0.565μB/Ni, in which
the spin-magnetic moment from the core electrons is only
−0.0074 μB/Ni. The contribution of ρc

mag(p) to the structure
of ρmag(p) is negligible. The first BZ of the fcc structure is
shown in figure 1(a), and the calculated energy-band diagram
is shown in figure 1(b). As seen in the energy-band diagram,
the present calculation predicts the X5↓-and X2↓-hole pockets.

3. Experiment

Three samples of single-crystalline Ni were prepared for 13-
directional MCP measurements. The surfaces for each sample
were normal to the 〈001〉, 〈110〉 and 〈320〉 directions. A
stereographic plot of the 13 directions is shown in figure 2.
The MCPs were measured on BL08W at SPring-8, Japan.
Elliptically polarized 176 keV x-rays, generated by an elliptical
multi-pole wiggler and monochromatized by a bent Si (620)
crystal, impinged on the sample with a 0.8 mm × 1 mm
spot size. Energy spectra of Compton scattered x-rays, I+
and I−, with a scattering angle of 178◦ were measured
with a 10-segmented Ge solid-state detector (Canberra, model
GL0115S). The subscript, + or −, denotes whether the
direction of an applied magnetic field is parallel or anti-
parallel to the scattering vector, respectively. For all the MCP
measurements, the magnetic field of 2.5 T was applied to the
sample at room temperature. The direction of the magnetic
field was alternated in a sequence of ‘+,−,−,+,−,+,+,−’
for 60 s each. It took about 6 h for each MCP measurement.
Ordinary data-processing described in [8] was made on I+
and I− and Jmag(pz) obtained were folded at pz = 0 au
to increase the statistical accuracy. The resultant Jmag(pz)

values are shown in figure 3. In each profile, the standard
deviation at pz = 0 au is about 3% of Jmag(0). Despite
Ni having one-third the spin-magnetic moment of Fe, the
Jmag(pz) values have been measured with a high statistical
accuracy using a state-of-the-art synchrotron-radiation facility.

φ

θ

Figure 2. Stereographic plot of 13 measured directions. Symbols φ
and θ denote the azimuthal and polar angles from the [100] axis,
respectively.

The evaluated momentum resolution is 0.52 ± 0.01 au. We
have found an excellent agreement between the present and
the previous Jmag(pz) values in the [100], [110] and [111]
directions [7, 8]. This confirms the reliable reproducibility
of the experimental Jmag(pz). The corresponding theoretical
Jmag(pz) values are shown by the red lines. The area of each
experimental Jmag(pz), between pz = −10 au and +10 au, is
normalized to the theoretical spin-magnetic moment of Ni.

4. Results and discussion

In figure 3, the 13 experimental Jmag(pz) values are shown
together with the theoretical ones which are convoluted with
a Gaussian function having a full width at half maximum
of the experimental resolution. Although the agreement
between the experiment and theory is fairly good, the following
discrepancies are recognized. (i) The dip in the experimental

3
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(φ, θ) =

μ

Figure 3. Experimental (solid circles) and theoretical (red lines)
Jmag(pz) values of Ni along 13 directions. Theoretical Jmag(pz)
values are convoluted with the experimental resolution. The standard
deviations are smaller than the size of the solid circles.

Jmag(pz) for pz < 1 au is deeper than that in the theoretical
one along the [100] direction. (ii) The theory predicts distinct
periodic peaks indicating the Umklapp processes at pz ∼
0.7, 2.0, 3.3 and 4.7 au along the [110] direction, while
the experimental Jmag(pz) does not show prominent peaks,
especially at pz ∼ 0.7 and 2.0 au. (iii) The theory slightly
overestimates the peak at pz ∼ 1.6 au along the [111]
direction. These discrepancies along the [100], [110] and [111]
directions have been previously mentioned in reports [7, 8].
Along the other directions, discrepancies similar to (i), (ii) or
(iii) are also observed, as shown in figure 3.

The 13 experimental Jmag(pz) values shown in figure 3
have been used to reconstruct ρ(13)

mag (p), where the superscript
denotes the number of Jmag(pz) values for reconstruction.
In the direct Fourier-transform procedure, an empirical filter
function, defined by equation (4.3) in [4], has been multiplied
with Bmag(0, 0, z) to reduce the high-frequency components
originating from statistical errors in Jmag(pz). The (100) and
(110) cross-sections of the experimental ρ(13)

mag (p) are presented
in figures 4(a) and (b), respectively. The first BZ boundary is
represented by the solid white lines, and the reciprocal lattice

points are marked by the open circles. The BZ boundaries
centred at each reciprocal lattice point are indicated by dashed
white lines for convenience in the following discussions.
Highly negative ρ(13)

mag (p) are recognized in the vicinity of the
first BZ boundary and around |p| = 0 au. Outside the first BZ
boundary, ρ(13)

mag (p) increases with increasing |p|, and highly
positive ρ(13)

mag (p) appear at |p| ∼ 2.2 au. In the (110) plane,
positive peaks appear in ρ(13)

mag (p) around the positions denoted
by A and B in figure 4(b). The momentum at A, pA, is
expressed as pA = k 1̄

2
1
2

1̄
2

+ G111 where k 1̄
2

1
2

1̄
2

is the L-point

wavevector in the first BZ. The subscripts of k and G denote
x , y and z components, in units of 2π/a. The momentum at
B, pB, is expressed as pB = k001 + G1̄11, where k001 is the
X-point wavevector. A positive peak in ρ(13)

mag (p) is expected to
appear in the (100) plane at positions related to the X-point. In
figure 4(a), at the position denoted by C, the momentum, pC,
is expressed as pC = k010 + G002. A positive plateau appears
around the position denoted by D in the (100) plane, whereas
no positive peak is formed at C.

Theoretical ρ(13)
mag (p) has been reconstructed from 13

theoretical Jmag(pz) shown in figure 3, by the same procedure
utilized for reconstructing the experimental ρ(13)

mag (p). To
verify the adequacy of the reconstruction procedure, theoretical
ρ(13)

mag (p) is compared with original ρmag(p), which is
convoluted with a 3D Gaussian function having a full width
at half maximum of the experimental resolution. The (100)
and (110) cross-sections of both the theoretical ρ(13)

mag (p) and the
convoluted original ρmag(p) are also shown in figures 4(c)–(f).
Comparing them shows that theoretical ρ(13)

mag (p) reproduces all
the features of convoluted original ρmag(p) very well, although
slight smearing is introduced during the reconstruction process.
This indicates that the number and the distribution of the
directions along which MCPs are measured are properly
chosen to obtain experimental ρmag(p). The theoretical
ρ(13)

mag (p) reproduces highly negative experimental ρ(13)
mag (p) near

the first BZ boundary and positive ones around A and B in the
(110) plane. The theoretical ρ(13)

mag (p) has peaks at C in the (100)
plane, whereas the experimental ρ(13)

mag (p) in figure 4(a) forms
no positive peaks at C. The relative amounts of the theoretical
ρ(13)

mag (p) at pA, pB, pC and pD are approximately 8%, 9%, 9%
and 6%, respectively, with respect to the electron momentum–
density,

∑
b,σ ρσ

b(p).
Figure 5 shows the experimental ρ(13)

mag (p) on the [100],
[110] and [111] axes, where the error bars denote standard
deviations. The propagation of errors in the experimental
Jmag(pz) to ρ(13)

mag (p) through the reconstruction procedure
has been analysed according to the formalism in [4].
The evaluation of the standard deviations of ρ(13)

mag (p) was
performed in the (100) and (110) planes. The largest error,
0.0032 μB/(0.1 au)3, is found at |p| = 0 au. The standard
deviations along highly symmetrical axes, such as the [100],
[110] and [111] axes, are found to be larger than those at
other positions, as reported in [4]. The standard deviations at
|p| ∼ 1 au are less than two intervals of the contour shown
in figure 4. Thus, the fine structures of the experimental
ρ(13)

mag (p) outside the first BZ are not artefacts. The theoretical
ρ(13)

mag (p) on the [100], [110] and [111] axes is compared with

4
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Figure 4. Experimental and theoretical momentum–density distributions of magnetic electrons. Experimental ρ(13)
mag (p) is shown in (a) for the

(100) plane and in (b) for the (110) plane. The contour interval is 0.0005 μB/(0.1 au)3. White solid lines are the first BZ boundary and some
symmetry points are marked with the white letters. For the white dashed lines, see the text. White points are the reciprocal lattice points. The
(020), (002) and (1̄11) reciprocal lattice points are labelled. Theoretical ρ(13)

mag (p) is shown in (c) for the (100) plane and in (d) for the (110)
plane. Convoluted original ρmag(p) is shown in (e) for the (100) plane and in (f) for the (110) plane.

the experimental data in figure 5. They show good quantitative
agreements in the region |p| > 0.5 au, while the discrepancy
beyond the error bar is clear near |p| = 0 au.

Origins of fine structures in ρ(13)
mag (p) can be clarified

using theoretical momentum densities of magnetic electrons
of individual bands, ρb

mag(p) = ρb
↑(p) − ρb

↓(p). ρb
mag(p) has

been reconstructed from theoretical 13-directional MCPs for
individual bands, convoluted with the experimental momentum
resolution, using the same procedure utilized for reconstructing
the experimental ρ(13)

mag (p). Figure 6 shows ρb
mag(p) in the (100)

and (110) planes. Each ρb
mag(p) has characteristic features:

ρ1st
mag(p) shows highly negative spin polarization in the region

of |p| ∼ 0.6 au, ρ5th
mag(p) forms highly positive peaks at |p| ∼

2.2 au and ρ6th
mag(p) shows highly positive spin polarization

in the region of |p| ∼ 0.4 au. The reason for ρ1st
mag(p)

showing highly negative spin polarization in the region of
|p| ∼ 0.6 au (|G| = 0 region) is as follows. The energy-
band diagram in figure 1(b) shows that the states in the first

band are composed mostly of s- and p-characteristics around
the �-point and of d-character near the first BZ boundary,
because of the hybridization between s-, p- and d-like bands.
The hybridization in the first majority-spin band occurs ahead
of the first minority-spin band because the d-like majority-
spin bands are lower in energy than the d-like minority-spin
bands. Thus, the components of s- and p-characteristics in the
first minority-spin band are larger than those in the majority-
spin one near the first BZ boundary. In addition, the radial
momentum wavefunctions for s- and p-characteristics has large
values for |p| < 1 au, while that for d-character peaks at
|p| ∼ 2 au. These features can be recognized in figure 7
by the radial momentum wavefunction, Fl(|p|; El), which is
the Fourier transform of the lth radial wavefunction with the
energy El in real space [15, 16]: l corresponds to s-, p- or d-
character of the real-space wavefunction. Thus the negative
ρ1st

mag(p) is caused by the hybridization and the difference in
Fl(|p|; El) between s-, p- and d-states.

5
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Γ

Γ

Γ

Figure 5. Experimental (solid circles) and theoretical (solid lines)
ρ(13)

mag (p). (a), (b) and (c) are the [100], [110] and [111] axes,
respectively. The interval of the subscale, 0.0005 μB/(0.1 au)3, is
equal to the contour interval in figure 4. Vertical solid and dashed
lines denote the positions of the symmetry points and reciprocal
lattice points, respectively. For the error bars, see the text.

In the case of ρ6th
mag(p), the states in the sixth band are

composed mostly of d-character around the �-point, and s- and
p-characteristics increase near the first BZ boundary, as shown
in figure 1(b). It is a particular feature of the sixth band that
the Fermi surface of the majority-spin band is larger than the
surface of the minority-spin band. When |k| is in the region
between |kmin

F | and |kmaj
F |, only the states in the majority-spin

band contribute to ρ6th
mag(p), where kmin

F and k
maj
F denote the

Fermi wavevectors of the minority- and majority-spin bands,
respectively, with the same direction as p. This means that
ρ6th

mag(p) becomes highly positive in this region of |kmin
F | <

|k| < |kmaj
F | for p = k (|G| = 0). Thus, negative ρmag(p)

near the first BZ boundary is formed by the superposition of
negative ρ1st

mag(p) and positive ρ6th
mag(p).

Regarding ρ5th
mag(p), the situation is very different from

those in the first and sixth bands. The fifth majority-spin band
is completely filled, while the minority-spin band is partially
filled and the dominant states in both bands are of d-character
with 3z2 − r 2 and x2 − y2 type symmetries. When k is

located in a region where both the majority- and minority-
spin bands are occupied, ρ5th

mag(p) is nearly zero. When k is
located in a region where the minority-spin band is empty,
such as near X-, W- and L-points, ρ5th

mag(p) forms positive
spin polarization, which reflects the position and size of the
empty region of the minority-spin band. In addition, the radial
momentum wavefunction for d-character peaks at |p| ∼ 2 au,
as mentioned above. Then, the spin polarization of the d-like
fifth band peaks at |p| ∼ 2.2 au and is mainly attributed to
positive ρmag(p) at A, B and C. The positive peaks at C in
ρmag(p), which indicate the Umklapp processes, are projected
on the values of theoretical Jmag(pz) along the [110] axis
and form prominent peaks at pz = 0.66 and 1.99 au. This
feature induces the discrepancy between the experimental and
the theoretical Jmag(pz) along the [110] axis.

The positive ρ(13)
mag (p) around B, C and D in figures 4(a)

and (b) should not be taken as a sign indicating the presence of
the X5↓- and/or X2↓-hole pockets. As seen from the energy
band in figure 1(b), the X2↓- and X5↓-hole pockets belong
to the third and the fourth bands, respectively. As seen in
figures 6(e)–(j), we find no positive peaks at B and C in ρ3rd

mag(p)

and ρ4th
mag(p). On the other hand, we clearly see positive

peaks at B and C in ρ5th
mag(p). These features are not due

to convolution with the experimental momentum resolution.
Even in non-convoluted ρ3rd

mag(p) and ρ4th
mag(p) the peaks at B

and C are too small to be distinguished from the peaks in non-
convoluted ρ5th

mag(p). Therefore, the positive peaks in ρ(13)
mag (p)

are not a signature of the hole pockets, but related to the
large-hole Fermi surface of the fifth minority-spin band. The
present analysis of ρ(13)

mag (p) for individual bands indicates that
the presence of the hole pockets of Ni cannot be examined
experimentally by MCP measurements.

The origin of the discrepancies between experiment and
theory in ρ(13)

mag (p) around C–D and |p| = 0 au may be ascribed
to the quasi-particle nature of the electron system, in particular
to the non-unity and non-zero occupation in k-space. One of
the present authors (YK) computed Compton profiles of Cu
with the GW approximation (GWA) [17] using FLAPW basis
sets and obtained better agreement with the experiment than
with results computed with the FLAPW-LDA alone [18]. The
GWA scheme, however, does not work well for the MCPs of
Ni [19]. Ordinary GWA includes only long-range correlation
effects and can work well for Cu because of fully occupied d-
like bands. It has been pointed out that, for Ni, the short-range
correlation effects are important [20]. Evaluating these effects
requires higher-order diagrams in GWA for electron–electron
and hole–hole scattering processes.

5. Summary

The momentum–density distribution of magnetic electrons,
ρmag(p), of ferromagnetic Ni has been experimentally and
theoretically clarified for the first time. Experimental ρmag(p)
of Ni has been reconstructed by applying the direct Fourier-
transform method to 13-directional experimental Jmag(pz).
The experimental results were compared with the theoretical
ρmag(p), calculated with the FLAPW method based on the
LSDA, and the present theory accurately reproduced the fine

6
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ΓΓ

ΓΓ ΓΓ

ΓΓ

ΓΓ

μ

ΓΓ

Figure 6. Partial contribution from each band to ρ(13)
mag (p). The left-hand side is the (100) plane and the right-hand side is the (110) plane. The

contour interval is 0.0005 μB/(0.1au)3. White solid lines are the first BZ boundary. Some symmetry points are marked with white letters. For
white dashed lines, see the text.

Figure 7. Radial momentum wavefunctions, Fl(|p|; El), in
majority-spin bands for s-, p- and d-characteristics.

structures of experimental ρmag(p) except around |p| = 0 au
and at the positions related to the X-point. The analyses of
the spin-dependent momentum densities of individual bands
are found to be useful in interpreting the experimental ρmag(p).
We concluded that: (i) the observed dominant positive ρmag(p)

in the high-momentum region mainly originates in d-like fifth
band spin polarization and (ii) negative ρmag(p) near the first
BZ boundary is interpreted as a result of the superposition of s-
and p-like first and sixth band spin polarizations. The present
comparison provides a good test for the accuracy of the LSDA
applied to the electron system.
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